-3(t)=-2t^2+1

Simple and best practice solution for -3(t)=-2t^2+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(t)=-2t^2+1 equation:



-3(t)=-2t^2+1
We move all terms to the left:
-3(t)-(-2t^2+1)=0
We get rid of parentheses
2t^2-3t-1=0
a = 2; b = -3; c = -1;
Δ = b2-4ac
Δ = -32-4·2·(-1)
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{17}}{2*2}=\frac{3-\sqrt{17}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{17}}{2*2}=\frac{3+\sqrt{17}}{4} $

See similar equations:

| 39=4y-40 | | -9f-10=-10f | | -10+r=-9r | | 14-5p=2p | | -3=-2t^2+1 | | x-(x*0.25)=258 | | 8-9g=-5g | | -8(x)=x^2 | | 5v=7v-8 | | -3z+1=(2z+4)(3z-6) | | 150+30x=420 | | 40−4y=39 | | 12k-15=3() | | 36+x^2=225 | | 6x+6x+6x=45 | | 14+5x=3(-x+-3)-11 | | a—8a—4a+11a+-15a=13 | | 8x−20=39 | | (3x-24)+x=180 | | 12k-15=3( | | Y=x+5x=10 | | 16x^2-64=120x | | 2z+-14z-9z+17z=12 | | 5b=225 | | 63=9x-2x | | -5x+10=11 | | 5(2x-8)=3(4x+6) | | (20)(x)=1540 | | 3(3y+1)=3(5y+2) | | 5x3-10=5 | | 2+3*4=x | | 10x+40=12x+18 |

Equations solver categories